3.1.77 \(\int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx\) [77]

3.1.77.1 Optimal result
3.1.77.2 Mathematica [B] (verified)
3.1.77.3 Rubi [N/A]
3.1.77.4 Maple [N/A] (verified)
3.1.77.5 Fricas [C] (verification not implemented)
3.1.77.6 Sympy [N/A]
3.1.77.7 Maxima [N/A]
3.1.77.8 Giac [N/A]
3.1.77.9 Mupad [B] (verification not implemented)

3.1.77.1 Optimal result

Integrand size = 21, antiderivative size = 21 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=i \text {Int}\left (-\frac {i \text {csch}(c+d x)}{a+b \tanh ^3(c+d x)},x\right ) \]

output
I*Unintegrable(-I*csch(d*x+c)/(a+b*tanh(d*x+c)^3),x)
 
3.1.77.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(331\) vs. \(2(31)=62\).

Time = 0.63 (sec) , antiderivative size = 331, normalized size of antiderivative = 15.76 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=-\frac {6 \log \left (\cosh \left (\frac {1}{2} (c+d x)\right )\right )-6 \log \left (\sinh \left (\frac {1}{2} (c+d x)\right )\right )+b \text {RootSum}\left [a-b+3 a \text {$\#$1}^2+3 b \text {$\#$1}^2+3 a \text {$\#$1}^4-3 b \text {$\#$1}^4+a \text {$\#$1}^6+b \text {$\#$1}^6\&,\frac {c+d x+2 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )-2 c \text {$\#$1}^2-2 d x \text {$\#$1}^2-4 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2+c \text {$\#$1}^4+d x \text {$\#$1}^4+2 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4}{a \text {$\#$1}+b \text {$\#$1}+2 a \text {$\#$1}^3-2 b \text {$\#$1}^3+a \text {$\#$1}^5+b \text {$\#$1}^5}\&\right ]}{6 a d} \]

input
Integrate[Csch[c + d*x]/(a + b*Tanh[c + d*x]^3),x]
 
output
-1/6*(6*Log[Cosh[(c + d*x)/2]] - 6*Log[Sinh[(c + d*x)/2]] + b*RootSum[a - 
b + 3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1^4 + a*#1^6 + b*#1^6 & , (c + d 
*x + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - 
 Sinh[(c + d*x)/2]*#1] - 2*c*#1^2 - 2*d*x*#1^2 - 4*Log[-Cosh[(c + d*x)/2] 
- Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 + 
c*#1^4 + d*x*#1^4 + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c 
 + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4)/(a*#1 + b*#1 + 2*a*#1^3 - 2*b* 
#1^3 + a*#1^5 + b*#1^5) & ])/(a*d)
 
3.1.77.3 Rubi [N/A]

Not integrable

Time = 0.22 (sec) , antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {3042, 26, 4151}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i}{\sin (i c+i d x) \left (a+i b \tan (i c+i d x)^3\right )}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {1}{\sin (i c+i d x) \left (i b \tan (i c+i d x)^3+a\right )}dx\)

\(\Big \downarrow \) 4151

\(\displaystyle i \int -\frac {i \text {csch}(c+d x)}{b \tanh ^3(c+d x)+a}dx\)

input
Int[Csch[c + d*x]/(a + b*Tanh[c + d*x]^3),x]
 
output
$Aborted
 

3.1.77.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4151
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> Unintegrable[(d*Sin[e + f*x])^m*(a + 
 b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
 
3.1.77.4 Maple [N/A] (verified)

Time = 0.63 (sec) , antiderivative size = 96, normalized size of antiderivative = 4.57

method result size
derivativedivides \(\frac {-\frac {4 b \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 a}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}}{d}\) \(96\)
default \(\frac {-\frac {4 b \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a \,\textit {\_Z}^{6}+3 a \,\textit {\_Z}^{4}+8 b \,\textit {\_Z}^{3}+3 a \,\textit {\_Z}^{2}+a \right )}{\sum }\frac {\textit {\_R}^{2} \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-\textit {\_R} \right )}{\textit {\_R}^{5} a +2 \textit {\_R}^{3} a +4 \textit {\_R}^{2} b +\textit {\_R} a}\right )}{3 a}+\frac {\ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a}}{d}\) \(96\)
risch \(-\frac {\ln \left ({\mathrm e}^{d x +c}+1\right )}{d a}+2 \left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (46656 a^{8} d^{6}-46656 a^{6} b^{2} d^{6}\right ) \textit {\_Z}^{6}+3888 a^{4} b^{2} d^{4} \textit {\_Z}^{4}-108 a^{2} b^{2} d^{2} \textit {\_Z}^{2}+b^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{d x +c}+\left (\frac {7776 a^{6} d^{5}}{b}-7776 b \,d^{5} a^{4}\right ) \textit {\_R}^{5}+\left (\frac {216 d^{3} a^{4}}{b}+432 b \,d^{3} a^{2}\right ) \textit {\_R}^{3}+\left (6 d a -6 b d \right ) \textit {\_R} \right )\right )+\frac {\ln \left ({\mathrm e}^{d x +c}-1\right )}{d a}\) \(168\)

input
int(csch(d*x+c)/(a+b*tanh(d*x+c)^3),x,method=_RETURNVERBOSE)
 
output
1/d*(-4/3*b/a*sum(_R^2/(_R^5*a+2*_R^3*a+4*_R^2*b+_R*a)*ln(tanh(1/2*d*x+1/2 
*c)-_R),_R=RootOf(_Z^6*a+3*_Z^4*a+8*_Z^3*b+3*_Z^2*a+a))+1/a*ln(tanh(1/2*d* 
x+1/2*c)))
 
3.1.77.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 3 vs. order 1.

Time = 1.73 (sec) , antiderivative size = 20085, normalized size of antiderivative = 956.43 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\text {Too large to display} \]

input
integrate(csch(d*x+c)/(a+b*tanh(d*x+c)^3),x, algorithm="fricas")
 
output
Too large to include
 
3.1.77.6 Sympy [N/A]

Not integrable

Time = 0.44 (sec) , antiderivative size = 19, normalized size of antiderivative = 0.90 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int \frac {\operatorname {csch}{\left (c + d x \right )}}{a + b \tanh ^{3}{\left (c + d x \right )}}\, dx \]

input
integrate(csch(d*x+c)/(a+b*tanh(d*x+c)**3),x)
 
output
Integral(csch(c + d*x)/(a + b*tanh(c + d*x)**3), x)
 
3.1.77.7 Maxima [N/A]

Not integrable

Time = 0.40 (sec) , antiderivative size = 160, normalized size of antiderivative = 7.62 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int { \frac {\operatorname {csch}\left (d x + c\right )}{b \tanh \left (d x + c\right )^{3} + a} \,d x } \]

input
integrate(csch(d*x+c)/(a+b*tanh(d*x+c)^3),x, algorithm="maxima")
 
output
-log((e^(d*x + c) + 1)*e^(-c))/(a*d) + log((e^(d*x + c) - 1)*e^(-c))/(a*d) 
 - 2*integrate((b*e^(5*d*x + 5*c) - 2*b*e^(3*d*x + 3*c) + b*e^(d*x + c))/( 
a^2 - a*b + (a^2*e^(6*c) + a*b*e^(6*c))*e^(6*d*x) + 3*(a^2*e^(4*c) - a*b*e 
^(4*c))*e^(4*d*x) + 3*(a^2*e^(2*c) + a*b*e^(2*c))*e^(2*d*x)), x)
 
3.1.77.8 Giac [N/A]

Not integrable

Time = 2.97 (sec) , antiderivative size = 3, normalized size of antiderivative = 0.14 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\int { \frac {\operatorname {csch}\left (d x + c\right )}{b \tanh \left (d x + c\right )^{3} + a} \,d x } \]

input
integrate(csch(d*x+c)/(a+b*tanh(d*x+c)^3),x, algorithm="giac")
 
output
sage0*x
 
3.1.77.9 Mupad [B] (verification not implemented)

Time = 15.27 (sec) , antiderivative size = 3679, normalized size of antiderivative = 175.19 \[ \int \frac {\text {csch}(c+d x)}{a+b \tanh ^3(c+d x)} \, dx=\text {Too large to display} \]

input
int(1/(sinh(c + d*x)*(a + b*tanh(c + d*x)^3)),x)
 
output
symsum(log(-(1409286144*b^6*exp(d*x)*exp(root(729*a^6*b^2*d^6*z^6 - 729*a^ 
8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)) + 13421 
7728*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27 
*a^2*b^2*d^2*z^2 - b^2, z, k)*b^7*d + 1879048192*root(729*a^6*b^2*d^6*z^6 
- 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)* 
a*b^6*d - 2818572288*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4* 
b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^2*b^7*d^3 - 40869298176* 
root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2* 
b^2*d^2*z^2 - b^2, z, k)^3*a^3*b^6*d^3 + 28185722880*root(729*a^6*b^2*d^6* 
z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, 
 k)^3*a^4*b^5*d^3 + 15502147584*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 
 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^5*b^4*d^3 + 1 
8119393280*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^ 
4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^4*b^7*d^5 + 235552112640*root(729* 
a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z 
^2 - b^2, z, k)^5*a^5*b^6*d^5 + 14495514624*root(729*a^6*b^2*d^6*z^6 - 729 
*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^6 
*b^5*d^5 - 219244658688*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a 
^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^7*b^4*d^5 - 489223618 
56*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 2...